- Binary Search Tree, Inorder Traversal, Mathematical, median-finding, Recursion, Tree, tree-traversal

Median of all nodes from a given range in a Binary Search Tree ( BST )

  #include using namespace std;  struct Node {    struct Node *left, *right;    int key;};  Node* newNode(int key){    Node* temp = new Node;    temp->key = key;    temp->left = temp->right = NULL;    return temp;}  Node* insertNode(Node* node, int key){            if (node == NULL)        return newNode(key);          if (key < node->key)        node->left = insertNode(            node->left, key);      else if (key > node->key)        node->right = insertNode(            node->right, key);          return node;}  void getIntermediateNodes(    Node* root, vector& interNodes,    int node1, int node2){        if (root == NULL)        return;          getIntermediateNodes(root->left,                         interNodes,                         node1, node2);              if (root->key key >= node1) {        interNodes.push_back(root->key);    }          getIntermediateNodes(root->right,                         interNodes,                         node1, node2);}  float findMedian(Node* root, int node1,                 int node2){            vector interNodes;      getIntermediateNodes(root, interNodes,                         node1, node2);          int nSize = interNodes.size();              return (nSize % 2 == 1)               ? (float)interNodes[nSize / 2]               : (float)(interNodes[(nSize – 1) / 2]                         + interNodes[nSize / 2])                     / 2;}  int main(){        struct Node* root = NULL;    root = insertNode(root, 8);    insertNode(root, 3);    insertNode(root, 1);    insertNode(root, 6);    insertNode(root, 4);    insertNode(root, 11);    insertNode(root, 15);      cout